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gener~i1 r i agnet ic  ha rmon ic  number t r ansverse  e l ec t r i c  (TE)

and t ransverse m a g n e t i c  (TM) waveguide modes in a conduct ing

cy l inder  of rad ius R .  TIi~ analysis is carried out for a

hollow electron beam (radius R ) p r o p a g a t i n g  parallel  to a

uniform axial magnetic field~~~,~~~~ It is assumed that

‘1 , where v is Bud ke r ’ s paramet r and y
0
mc is the

elec t ron energy  in a frame of referenct moving with the beam

ax ia l  v e l o c i t y  
~~ ~~ 

One of the most important features

of t h e  analys is is that t h e  i n s t a h i l  itv growth rate for

m a g n e t i c  h a r m o n i c  n u m b e r s  s=2 , 3 , .  . . is comparable to the

growth  r a te  of t h e  f u n d a m e n t a l  ( s= l )  mode , p a r t i c u l a r ly

~ 112for moderate electron energy 4.f4~—f-i-’-.-l-f’y~) ~,O.4ic Moreover , I~~,

it is shown that the instability growth rate can he maximized ‘

by appropriate choice of the geometric parameter R
0
/R.
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I . INTROI ) UCT I ON

One of the most basic instabilities that characterizes a hollow

electro n beam 1 w ith sl ow ro ta t ional equ ilibrium is the elec tron cyclotron
2—10 . 4 , 5

maser instability. In recent experiments , the cyclotron maser

instab ility has been inves t igated for magnet ic harmonic number

s>2 , with particular emphasis on the impli cations fo r intense microwave

generation. Previous theoretical anal yses of this ins tability have

been carried out for a non—sel f—cons istent equilibrium slab configuration .
6’8

Strictl y speaking, a more accurate theoretical model of microwave

generation by the cyclotron maser instability, includ ing a determination

of the optimum value of the beam radius R0, requires a linear stability

anal ysis for perturbations about a self—consistent , cylindrical , Vlasov

equi I ibrium .

10
This paper develops a self—consistent theory of the cyclotron

maser instability for azimutha ll y symmetric perturbations with

magnetic harmonic number s>l . The present work extends the previous

s e l f — c o n s i s t e n t  the ory ’° of the cyclotron maser instability , developed

by the authors for s=l , to higher values of magnetic harmonic number

(s>2). The anal ysis is carried out within the framework of the Vlasov—

Maxwell equations for an inf initely long elec tron beam propagating

parallel to a uniform magnetic field B ~ with axial velocity V ~0~ z b~ z
We assume that the beam is very tenuous , so tha t the per turbed field

can be approx imated by the vacuum waveguide fields (v/y
0
<~ l, where v

is Budker ’s parameter). Equilibrium and stability properties are

cal cu lated f or the specific choice of equilibri um elec tron distribut ion

function in which all electrons have the same value of canonical

angular momentum (P
0
) and the same value of energy (y

0
mc 2) in a frame

1
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3

of reference moving with axial velocity 
b

C [Eq. (5)]. Equilibrium

properties are examined in Ste . TI . An important feature of the analysis

is that the equil ihr in n  d i s t r i  hu t  ion I unction in Eq. (5) corresponds

to a hollow density p r o f i l e  with sharp rad ia l  boundaries  [Eq. (13)] .

The formal s t a b i l i ty  anal ysis for  a z i m u t h a l  ly symmetric electro-

magnetic p e r t u r b a t i o n s  (~ /~ O=O) is  c a r r i e d  out in Sec. III. Making

u~ e of the f a t  that the electron trajectories are circular , the per—

• turl)cd distribution function is cal culated for arbitrary magnetic

harmonic numbers [Eqs. (38) and (39)]. Equations (38) and (39),

when combined with Eqs. (16), (22), (23), and (24), constitute one

of the main results of this paper and can be used to investigate

stability properties for a bread range of system parameters. In

th is regard , we emphasize that Eqs . (38) and (39) are derived with no

a priori assumption that the electron motion in the beam frame is

2 2
much smaller than the speed of light in vacua , i.e., that

In Sec. IV , a detailed analytic investigation of the cyclotron

maser instability is carried out for the IC and TM wavegL ide modes ,

assuming Ilg<<l. Introducing the normalized Doppler shifted eigenfrequency

[Eq . (49)]

• X [Y b
(W_ kV

b
)_ s W ]/ W

th e dispers ion relation can be expressed as [Eqs. (48) and (51)]

x 3_Q L x + ~~ sQ E / ( 2 s+ i ) = O , TE mode ,

x~—Q~0x1t Q ~~/5~~, TM mode ,

where 
~h
=l/(l 8

b~ 
w =eB

0
/y
0

mc is the electron cyclo tron frequency

in a frame of reference mov ing with axial velocity 8
b’~~z

, k is the ax ial

—~~~ •~~~~~• — - ~~~~~~~ • ~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ _ •~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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wavenumber, u is the complex eigenfrequency , Q1
~ (Q~~

) is the coupling

coefficient for the TE (TM) mode [Eqs. (50) and (52)1. and s=l , 2, 3...

denotes the magnetic harmonic number. Evidentl y, for given s which

satisfies ci <ci for the TE mode and ci <~~ for the TM mode , thesi On si On

maximum growth rate occurs at a value of R0IR given by [Eq. (53)]

ci /n , TE node
R0/R 

si On

a /~ , TM mode
sl On

where a is the first zero of J’(y)=O , and ci and ~ are the nthsi s On On
zeroes of J

1
(y)=O and J

0
(y)=0, respect ively.

A detailed numerical analysis of the dispersion relations in Eqs .

(48) and (51) is presented in Sec. V , wher e stability properties are

inves tigated for a broad range of system parameters. It is found

that the growth rate of perturbations with s>2 increases rapidly

when the value of is increased . We therefore conclude, for modera te

or high values of 
~~~~~

, that magnetic harmonic perturbations with s>2

are also important unstable modes for intense microwave generation by

the cyclotron maser instability.

Finally, we note that  Eqs. (53) and (30) can be combined to determine

the conditions for maximum growth rate and hence optimum conditions

for intense microwave generation by the cyclotron maser instability.

In particular , the microwave frequency W
~
SW Y b 

produced by the electron

beam can be tuned by the matching condition R =ci
0

C/Su in Eq. (30).

Moreover , selecting R /R a /a maximizes the growth rate of the TE0 c si On

mode perturbation with magnetic harmonic number s (Sec. IV and V).
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I I . I _~~j I~iR •1 Pft y~ ç~y ii ~
F I ES i\ l) BASIC ASSUMPTIONS

As i l lustr a t e d in l i e , . , the eqil i I i l ’ r i t i m  ( - I)nfigt lr ;It  ion c o n s i s t s

of a slo y ro tat i ng hollow ci o t t  ron beam that propagates  p a r a l l e l  to

a uniform applied magnetic field B
0~ 

with mean axial velocity 
~ b

C
~~Z

.

The mean radius of the electron beam is denoted by R0 
and a grounded

cyl indrical conducting wall is located at radius r=R . The app lied

nagnetic field provides radial confinement of the electrons , and the

radial thickness of the electron beam is denoted by 2a. As shown in

Fig. I, we introduce a cy lindrical polar coordinate system (r ,0,z)

with the z—axis coinciding with the axis  of symmetry ; r is the  radial

distance from the z—axis , and B is the polar angle in a plane perpendicu lar

to the z—axis.

The following are the main assumptions pertaining to the present

analysis :

(a) Equilibrium properties are independent of z (aI~ z0) and

azimuthally symmetric (a/B0 0) about the z—axis.

(b) The mean canonical angular momentum of the electrons is

nega tive , which corresponds to a slow rotational equilibrium.
1’10

(c) It is further assumed that

(1)

2 2 .where ~= N e  /mc is Budker s parameter ,

r R
N 27T J ~ dr r n°(r) (2)

0 
e

is the number  of e l e c t r o n s  per uni t  ax ia l  l eng th , n °( r )  is the

equilibrium electron density, c is the speed of l igh t in vacuo ,

—e and m are the charge and rest mass , respectively, of an elec tron ,
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and y
0
mc

2 
is the electron energy in a frame of reference moving with

the mean axial ve loci ty  V
b~ z of the electron beam . The inequal i ty

in Eq. (1) indicates that the beam is very tenuous , so that the

perturbed fields can be approximated by the vacuum waveguide fields. 
10

Consistent with the low—density assumption in Eq. (1), we also neglec t

the influence of the small equilibrium self—electric and self—magnetic

field s that are produced by the lack of equilibrium charge and current

neutralization.

For azimuthally symmetric equilibria with ~/~ 0 O =~ /Bz , there are

three single—particle constants of the motion. These are the total

energy H,

2 2 4  2 2 1 / 2H=ymc “ (m c +c 
~~ 

) , (3)

the canonical angular momentum P
0,

P
0
=r[p

0
—(e/2c)rB

0
] , (4)

and the axial canonical momentum In Eqs. (3) and (4), lower

case denotes mechanical momentum and the equilibrium self—fields

have been neglected in comparison with the external magnetic field

B
0~ 

[see Eq. (1)]. Any distribution function that is a function

onl y of the single—particle constants of the motion satisfies the

stead y—s tate Vlasov equation (a/lft=0). For present purposes ,

we assume an equilibrium dis tribution func t ion of the form ,
1’10

0 
n
0
R

= 
~ 6(U)t~(P

0
—P
0

) , (5)
2TrnrY

~b
YO

where n
0
const. is the electron density at r R 0, P0~

—(e/2c)(R~ —a
2)B

0
cons t

is the canonical angular momentum of the electrons,

U H_8
b

cp
Z
_y

O
mc 2/y

b 
(6) 

-~~~~~ —---—~~~~~~~ 
---.• ~~----- • --- • - • •
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is an e f f e c t  ive cut r~ v v a riabl e , ‘
1
=const . i s  d e f i n e d  by

2 1/ ?
and and I) 

I r e  c o n s t a n t s .  I t is st r a i g h t f o r war d

to show t tat the .-i~-~ i al veluc i t v p r o f i l e  assoc I ;i t ed  w i t h  Eq .  (5) is

un i form over t h e  beam cress  sec t  i o n .

Several  p e r t i n e n t  e q u i l i b r i u m  p r o p e r t i es  can be deduced for

the class of e l e c t r o n  beam e q u i l i b r i a  described by Eq. (5). For

this purpose , it is useful to transform t he  tnergv variable U

defined in Eq. (6) from momentum variables 
~~~~~~~~~ 

approp ria te

to t h e l aboratory frame to momentum variables (p’ ,p~ ,p ’) appropriate

to a frame of r e fer e n c e  m o v i i i ~ w i t h  v e l o c i t y  t3 Ce , where e is a• b~~ z

unit vector in the z—direction. The relevan t transformation
1’1°

is given by

~~~~~~ 
P~) P~ ’ P Z ~b~~’z~~ 

Bb
) 1=Yb(1

+
~b

pZ
/mc) , (7)

and

U’ = -
~~
- (y ’-y

0
)mc

2 
, (8)

where (l+~ 2/m
2
c
2
)

h/2  
and y I =(i+~~~m

2
c
2
)

h/2
. After some straight-

f orward al geb ra , we find

0 3 n
O
R
O(Y+ ~b

p / m c) 2 2 3
P = 

2~m y y ’ ó(y ’mc —y
0
mc )~s(p’—p0

)ci p ’

(9)

wher e d 3p=dp dp
~
dp and d3p ’=dp~ dp~dp ’. It is evident from Eq. (9)

that Y0
mc 2 can be identif ied with the total elec tron energy in

a frame of reference moving with axial velocity 8b C •

The energy var iable y ’mc
2 

in Eq. (9) can be expressed as

~ 
‘mc

2
c (m

2
c
2
+m

2
~
2
g
2+p 2

) 
1/2 (10)

where use has been made of P~=P0 , g is d e f ined by

~1 

_ _ _ _
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R
g(r) = —

~~ [p+(p
2
+a

2)/ 2R
0

] , (11)

u e B
0/mc is the nonrelativistic electron cyclotron frequency,

and p~ 2=p~ 2+p 12 . In Eq. (11) p is defined by

p=r-R
0 

. (12)

Substituting Eq. (1].) into Eq. (9), and representing

r r 2~ r~J d3~ ’rrj d~~ J 
dnj dp p ~

0 0

it is straightforward to show that the elec tron density can be

expressed as

n
O
(r)=Jd

3pf O ( H P P )  = n
o 

—
~~ ~ (a

2
—p

2) , (13)

where

(14)

is the  ha l f—th icknes s  of the beam , and •(x) is the Heaviside step

func t ion def ined by

(0 , x<O ,

~ 1 , x>O

The s e l f — c o n s i s t e n t  e lect ron dens ity  p ro f i l e  is i l lustrated in Fig. 2.

Evidently, the electron beam equilibrium described by Eq. (5) has

sharp radial boundaries. Additional equilibrium properties associated

with the distribution function in Eq. (5) are discussed in Refs. 1

and 10.

A ~~~~ —• 
_____________________________________ _________________ 

-•
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III. LINEARIZED_VLASOV—MAXWELL E QUAT I ONS FOR TENUOUS BEAM

I ii t h i  Is sect iou , we nua k e use of thii I I near i zed V Ias ov— Maxw el 1

• equations to invest  iga te  s t a b i l i t y  propert ies for azimuthally symmetric

perturbations (~~/~~O= 0) about  a tenuous , hollow—beam equilibrium

descr ibed by Eq. (5). We adopt a normal—mode approach in which all

p e r t u r b a t i o n s  are assumed to vary w i t h  t ime and z according to

~~ (x , t ) ( r ) ex p {i ( k z - w t ) }

where Ima>0. Here w is thi comp lex eigenfrequency and k is the axial

wavenumber. The Maxwell equations for the perturbed electric and magnetic

field amplitudes can be expressed as

~ ~(x)~~~~~~~~~ c ’~~%

(15)

~~ll(x) = 
~~~~~ J(x)-i ~ E ( x )

“~~~U~~ U C ‘I~~ ’\~ C~~~~~ ”

where

J(~~)=_ efd
3

p~~f ( ~~~~) (16)

is th e  per tu rbed  c u r r e n t  d e n s i ty .  In Eq .  (16) ,

0 v ’ x~~( ‘)
f e ’~~~~~f 

d T e x P {_ i ~ T}{~~~~’) + 

~ 
} f-i- f° (17)

is the perturbed distribution function , t=t ’ — t , and the par ticle

trajectories ~~‘(t ’) and £I ’( t ’) s a t i s f y d~~’/ d t ’=~~’ and d~~’/ d t ’~~—e~~’xB
0~~~/c ,

w i t h  “ i n i t i a l ” c o n d i t i o n s  x ’(t ’= t) = x  and v ’( t ’= t)= v .

In the tenuous beam limit consistent with Eq. (1), the per turbed

f ields can be ap prox ima ted by the vacuum waveguide fields)0

In this context , the pre ent stability analysis ut ilizes the vacuum

transverse electric (TE) and transverse magnetic (TM) waveguide modes

_ _  — ~~~~~~~~--— —~~~~~~~~~~ -- --~~—~~~~~~~~~~~~~~~~~~~~~~~~~ • •— -~ —~~~~~ ••m ——
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as a convenient basis to represent a general electromagnetic field

perturbation within a cylindrical waveguide. Making use of Eq. (15)

and neglec ting the per turbed current dens ity , the vacuum waveguide modes

can be expressed as

B (r ) =J
0

(n 0 r / R ) = —j ( c / w r ) [ B ( r E
0 )/ ~lr } = f [~l ( r B )/ ~l r ]/ k r  , (18)

for the TE mode and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (19)

for the TM mode. In Eqs . (18) and (19), J~~(x) is the Bessel function

of first kind of order f, and ci and f are the nth roots of J (cc )‘OOn On 1 On

and J
0
(13
0

)=O , respectively. Moreover , without loss of generality ,

the normalization amplitudes for B (r=O) and E
~
(r=0) have been set

equal to unity in Eqs. (18) and (19). After a simple algebraic

manipulation of Eqs. ( 1 5 ) , (18), and (19) , it is straightforward

to show Li at

2(
~ 

- k~ - On) J
1

(a 0nr/Rc
)=_4

~~
(a
0n

/R
c
c)J

9
(r) , (20)

for the TE mode and

- k
2 

- 

~
) J0~~~~ r/R )=4~ ik[~~~(r)-(w/kc

2
)J (r)] (21)

for the TM mode. In Eq. (21), the perturbed charge density p (r) is

defined by

(22)

Multip lying Eqs. (20) and (21) by rJ
1

(a
0 r/R ) and rJ

0
(1~0 r / R ) ,

respectively, and integra t ing from r=O to r=R , we obtain

—--- _-—-• --- ———- - ——• - •-~~~
_- — .— - •- -

~~~ --~~~~ -— --
~~~~

---•----- --- ____ _ •_a~~~~
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2 
2 

8na /R c R

(
~~~

• - k~ - On) - 
(h i  c dr r 

~1 (u 0 r / R ~~ ] (r )  (23)
c R [R • ( ) (c i  ) j 0

-• On

for the TE mode and

(
~~~ 

- k
2 

- ~~n) = 

[ R J ( ~~~ ) ] 2 J~ 
dr r j

0 On R
c) ~~~~~ 

- 

(24)

for the TM mode. For present purposes it is also assumed that

• ~S
Hw kV

b
sw

C~~ b
) w c~~ b 

(25)

where 
~
2 w_ kV

b
_su /y

b 
is the Doppler shifted frequency , w e B

0
/y
0

mc

is the electron cyclotron frequency in a frame of reference moving

with axial velocity Vb ,  and s l ,2,3... denotes the magnetic harmonic

number.

To lowest order , the eigenf requency u and axial wavenumber k

are obtained from the simultaneous solution of the vacuum waveguide

mode dispersion re la t ion ,

2 
2 

cc~~~/R~ , TE mode
= (26)

c ~/1 , TM mode

and the condition fo r  cyc lo t ron  resonance

• 
w
~

kV
b
+sw /

~
y
b 

. (27)

Moreover , to maximize the growth rate and efficiency of microwave

genera t ing  it is required  that the group velocity of the vacuum

waveguide mode in Eq. (26) be approximately equal to the beam

10
velocity, i .e. ,

2du kc (28)g dk w b~~
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S o l v i n g  Eqs. (27 )  and ( 2 ~~) for  t h e  ch a r a c t e r i s t i c  frequency and ax ia l  wave—

number (~i , k ) = ( w 0, k0) ,  we f i n d  (F i g. 3)

O ’
~b

(29)

k
o
=sw

~~
Yb~ b

/c

where 
~~~~~~~~~~~~~~ 

For maximum growth , it is also required that

(w0,k0
) solve E~ . (26) in leading order. Therefore , for max imum

grow th , we find that Rc should sa t isfy

~ 
a~ c/sw , TE mode

R ~ ~ C (30)
c a

0 c/sw , TM mode
On c

for intense microwave generation at frequency w s w ’Yb
. Because of the

discrete nature of cc0 ,  0On ’ and s , we also conclude t h a t  the s t a b i l i t y

analysis can be carried out separa tely for the TE and TM modes.

The per turbed distribution function is calculated for the case of

a self—consistent Vlasov equilibrium in w h i c h  all e lec t rons  have the

same canonical angular momentum and the same total energy in a frame of

reference moving with axial velocity V
b~ 

[Eqs. (5) and (9)]. To

s imp lif y the right—hand side of Eq. (17), we make use of Eqs. (4)

and (6) and the identities ~L/’~
(o=v—V e and ~IP /B p = r~ , where e

~~~~~~~ b’~-z B ‘~‘0

is a unit vector in the 0—direction . The TE mode portion of the

perturbed distribution func tion can then be expressed as1°

0 kV
(r ,

~~~~eI 
dtexp{i [(kp / ym)-w]t} 

{(i 
- E

0
(r ’)v~ -

~~~~~~

0 
(31)

+r ’I(i — ~1~-~-) ~~ (r ’) — —i B ( r ’)] ~~~~~

which is required to calculate the perturbed azimuthal curren t

density J
9
(r) in Eq. (23). Similarly, the TM port ion of the per turbed

_ _ _ _
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dis tribut ion func tion is given b y 1°

~f
° 0

~
M (r~~ )=e 

~~~ 
f dTexp{i [(kp /

~
nI)
~
oJT }{[E

r
(r ’)_8

b
B
O
(r ’ ) ]v ’

-

~~ (32)

+ Ez
(r ’ ) [ ( p

z
/ Y m ) _ V

b I J

which is required to calculate the perturbed charge and axial current

densi ties in Eq. (24). In obtaining Eqs. (31) and (32), use has been

made of the ax ial orb it

• z’=z+(p /ym)(t’—t)

The transverse (radial and azimuthal) motion of a typ ical elec tron

is illustrated in Fig . 4. (The dotted circle is the electron orbit

in a plane perpendicular to the z—axis.) The radial distance of the

electron from the z—axis at times t ’=t and t ’=t ’ are denoted by r and

r ’, respectively. The point C is the gyrocenter of the electron

trajectory. The angular coordinates ~ and q ’ are the perpendicular

velocity—space polar angles at times t ’=t and t ’ t ’, and are related by

The transverse veloc it ies a t times t ’=t and t ’ t ’ are denoted ,

respectively, by 
~T 

and v~ , and the corresponding speeds are defined by
2 2 1/2 , ,2 ,2 1/2v

T
(v +vO

) and v
T

(v +v
0 

)

To s implif y the present analysis , we also assume that

(33)

2 1/2 .where f3
0

(l—i /y
0
) . Equation (33) is easily satisfied in parameter

regimes of exper imenta l  i n t e r e s t .2 5  Wi th in  the context of Eq.  (33) ,

it is val id for s<3 to neglect the terms proportional to ~f
°/~ P0 

in
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Eq. (31), since the corrections associated with these terms are of order

(v/’rQ)(c/O0
w c R(Y 

(<<1) or small er. Substituting Eq. (18) into

Eq . (31), we find that the perturbed TE m ode distribution function

can be approxima ted by

ieR 
~ 

if° 0
= 

~~~~ 
( k v

b
) ~1 

~~~~~ f dTexp{i[(kp /ym)-w]T}

(34)

xsin(
~~
’_P ’ ) J

1
(a
0

r ’/ Rc)

2 2 1/2 ,where PT Ym
~
T
T

(Pr+P0) , and use has been made of v
O

v
T
sln (. —0 ) .

Making use of Eq. (28) and substituting Eq. (19) into Eq. (32), we

obtain

0
f
~~

(r ,
~~
)=e[(pZ/ym)

_V
b~ • J dTexp {i [(kp~ /~~ )_w]T}J 0(0

0~
r ’/ R~)

(35)

for the perturbed TM mode distribution function.

The Bessel function summation theorem for the triang le OAB

in Fig. 4 can be expressed as
11

exp{
~~~

(o t _o)}J
i
(aon

r ’ /R
c
)
~~~~ ÷s, o n r c s i

~~~~n
R
c
)

(36)

xexp (is ’ (r+o—qt —~~ u/2y)}

S imil arly, for the triangle ABC , we can represent

exp ( I  
~~~

— _
~ c

h/ si~~~~n
R
c
)

(37)
0 /ciO PT ~0n~T

~ 
‘~s+h ’~~ml~~~~~) ~s (m~~R )  

exp{ isw T/~~)

where s=l ,2,3... denotes the magnetic harmonic number. Making use of

Eqs. (28), (36), and (37 ) , and ca r ry ing out the time integration

_______________________________
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in Eq. (34), it is straightforward to show, for a given harmonic

component s , tha t  t h e perturbed TE mode dist r ibution function can he approx-

imated by- 
(

ci
0_~T’

\ (
a
onPT

eR (w—kV )p i f ° 
~s—f\m~l R ) ~s+l \ mGi R

= 

~~ 2’
~b

rn 
T __ - 

~
‘(w_kV

b
)_ sGi

C/1b 

c

(38)

x
~~~(i)

s
J
s,(aOnr/R

c
)J
s+s, 

~~ 
exp { is ’(0-~ ) }

where use has been made of the  Lorentz  t r ans fo rma t ion  in Eq. (7 ) .

In obta in ing  Eq.  (38) ,  we have neg lected the mode coupling between

dif fere nt values of s , which is consistent with Eq. (25). In a

similar manner , the per turbed TM mode distribution function for harmonic

Component s can be approximated by

ie p ’(af
0
/~ U) 

I 00n~T
2 Y ’(w_kV

h
)_s

~ C
/’
~b 

5 ~ m~~R

(39)

x~~ (i)
5

J , (00~ r/ R )J
5~ 5, ~~~ 

exp{is’ (0-~ )}

Equations (38) and (39), when combined with Eqs. (16), (22),

(23) , and (24), const itute one of the main results of this paper

and can be used to investigate stability properties for a broad range

of system parameters. In this regard , we emphas ize that Eqs. (38)

and (39) have been derived with no a priori assumption that

or that a<<R
0
. However, in the limiting case where 0~ <<l , Eqs. (38)

and (39) can be simplified considerably (Sec . I V ) .  

:_ ~~~~ .~~~~ •• ~
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IV. CYCLOTRON MASER INSTABILITY F’OR

In t h i s  s e c t i o n , s imp l I f i e d  ex p r e s s i o n s  are obtained for the

perturbed distribu t ion function in Eqs. (38) and (39), and the

results are used to derive the dispersion relation for several different

values of magnetic harmonic numbers. The present analysis assumes

that the electron motion in a frame of reference moving with axial

• velocity O
b
C is much smaller than speed of light in vacuo , i.e., that

2 2
0o

1_l/ y
o
<<l . (40)

Equation (40) can be used to truncate the summations over s’ in

Eqs. (38) and (39), keep ing onl y lead ing terms of order

Defining Q
E 

and to be the coupling coefficients between the

vacuum TE and TM waveg u ide modes and the cyclo tron resonance mode

w k V
b

+sw /Y b ,  it is found tha t Q
M

/QE
1<0g/4 [see Eqs. (50) and (52)].

In this context (og<<l), the ins tability growth rate is larges t

for the TE mode.

The perturbed distribution function in Eqs. (38) and (39) can

be further simplified by making use of the symmetrY properties of

the equilibrium distribution function f°(u ,P0
). Since the variable

U’ is an even function of 1
~r 

[Eq . (8)], it follows from Eqs. (16)

and (22) that any term in Eqs. (38) and (39) that is an odd function

of will give zero when the integration over 
~r 

is carried out.

Theref ore , when evaluating 
~es~~~’1~

) ,  we simp ly omit terms proportional

to odd functions of 
~~ 

To evaluate the momentum integral in Eqs. (16)

and ( 2 2 ) ,  use is made of Eq. (10). After some straightforward algebra ,

we f ind

~1 
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n R

fd
3

p — 

~
-i ( k V )sGi /y 

- -—-

~~

--

~~

-- 

~~

—

~~

-- 
[(1 + i—) o ( p - a )

÷ (1 - 
~~~

) ~(~ +a)J - 
0
~~
(w_kV

b) 
~ (a~

_p
~~~

p
2 

~f°/ 5 U  p ’2
r e l ( 3 , z ed p — ________________ — — d p --i-—
~ Y’(w_kV b

)_sw
c
/lb b 

y (w_kV
b
)_5W

c/Y b

~2 2 2
n
0
R
0
m 

~ 
b0
(a —g )(w_kV

b
) 2 2
•(a —p )

0 2~ 20 s 2a 0

( 3 P~ 
3f 0/aU 

, ______ ______________

j  

d 
~ 
~~ 

y ’(w_kV
b
)_sGi

c
/y
b ‘

~
‘
b j

d 
~ •

~~~ 
1’(w_kvb

)_sGi
c /Y b

3n
0
R
0
m Gi 2 2 1 13

0
(w_kV~)(l_~ /a ~ 2 2

2 r (a —g )~~ -—— 
2 

e(a —p )
s 412

S

where the Doppler shif ted frequency 
~~ 

is defined in Eq. (25), and

g(r) is defined in Eq. (11).

We first investigate stability properties for the TE mode pertur-

bation with fundamental magnetic harmonic number (s=l) . From Eq. (38),

the perturbed distribution function is approximated by

eR w—kV p
f E (r~~~) = - —~~~~~~ 

2
h 31(cc0 r / R ) 

~~~(
°

k~~~~~
Gi/ ( 42)

where p
0
=p~sin@~

i_ 0) Tnw~ g. The perturbed azimuthal current density

is evaluated by substituting Eq. ( 4 2 )  in to  Eq .  (16) and making use

of Eq. (41). After some algebra , we obtain

2
ri e R R (w-kV )

• J~ 1
(r) = — 

2I OYb
Tncc

O
cr 

b_ 
~ (a r/R )g

2 

~k [(1 + 

~
-) ó(p-a)

(43)
0
2
(w—kV )

+ (1 - i—) 6 (r+a)] - 
0 

2 
b 

~ (a2-p 2)
0 a l l

1

_ _ _
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The radial integration on the right—hand side of Eq. (23) can be

carried out by Tay lor expanding the integrand abo ut r=R0, and keeping

leading terms of order p
2

(r—R
0)

2
. The Taylor expans ion of the Bessel

f unctions provides a good approximat ion when the f unctions are slowly

varying over the minor cross section of the beam . The number of

electrons per unit axial length of the beam (N) can be determined

by substituting Eq. (13) into Eq. (2) , which gives N 47ran 0R0 .

Eliminating n
0 

in favor of N and carrying out some s t ra igh t fo rward

algebraic manipulat ion, we obtain the s=l TE mode dispersion relation

° k
2 ~0 — 2~ 

J
1
(cc
0

R
0

/ R )  2 w_kV
b

2 
R
2 y

0~~ 
R J

2
(cc
0 )

c 
2 2 (44)

3(W_kV
b
_C

c /Y b
)
2

where use has been made of v=N e
2
/mc2. The dispersion relation in

Eq. (44) is identical to the r:sult obtained prev iously by Uhm et al.1°

for s=l.

In a similar manner , we have derived the dispersion re la t ion

for several values of magnetic harmonic numb er s. The following

equations summarize the main analytic results obtained for

(a) The TM mode dispersion relation for s=l is given by

2 ~
2 

2~ 0
2 

~ (0 R /R ~ 
2

- k
2 - 

{ J 1
~~

0

0
) ] {w_kV

b
_W

C /Y b

2 
(45)

OO
w (w_kV

b)

5(W_kV
b
_W

c/Y b
)
2 

2where use has been made of the recur sion formula J
0
—d(J

0
J1

)/dx—

J0J 1/x~’.J~~.
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(b) The TE mode dispersion relation for s 2  is given by

2 8\ 
~~

‘ •l ) (~ R / R .) 2
w 2 1)11 C )  _ ( C i i  0 I)
2 

- k - 

R
2 - 

1O~ i) I~~-J 2
(cx
0
) w_kV

b
_2w

c
/yb

2 2 
(46)

I~o
(w_ kV

b
) 

_____

S 
— 

5(cJ _ kV
h

_ 2 c  
~~~~~

where use has been made of

2
J~ —d(J 1

J
2
)/dx—J

1
J2/ x J 2

(c) The TE mod e dispersion relation for s=3 is given by

2 
k
2 — 

81’~0~ J
3
(cc
0

R
0

/ R )  2 w_kV
b

c
2 — — 

R
2 

- — 20
~ O~ b 

R J
2
(ci
0
) w_kV

b
_3
~ c

/yb
(47)

- 
~o

(w_kV
h)

7(w_kVb
_3w /Yb)

2

where  use has been made of

J~=J~ -2d(J1
J
2
)/dx-2J

1
J
2
/x+d

2(J
1
J
3)Jdx

2
+3[d(J

1
J
3
)/ dx]/x

Substituting Eq. (30) into Eqs. (44), (46), and (47) ,  and making

use of 
~
•kV

b
+s w / Ib, we obtain the approximate TE mode dispersion

re la t ion

x
~
_Q
~n

x
s+0

~
sQ
~n

/(2s+l) = 0 (48)

for s=1 ,2,3. In Eq. (48), the normalized Doppler—shifted eigenfrequency

is defined by

x
S
=[y

b
(w_kV

b
)_sw

C
]/wC ‘ 

(49)

and the coupling coefficients between the TE vacuum waveguide mode

and the elec tron cyclo tron resonance mode are defined by
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Q~~ (R
0
/R )=v [J

1
(cc

0 
R
Ø

/R ) I’j 2~”o~~ 
I / Y oYb

ci
ofl

Q
~~

(R
O
/R )=l6v0

~~
[J
2

(a
O

R
O

/R )/J
2

(a
O fl2/ 3IOyba~ , (50)

n O /R
c

9
~
)(30

O
)
4 [J

3
(a
0 

R
0
/R )UJ

2~~ 0 
) ]2/4 0Y

o1b~~ n

Similarly , for the s=l TM mode , we obtain

x~—Q~~x1+0~Q~~ / 5 O  , (51)

where the coupling coefficient 
~~n 

is def ined by

Q~~ (R
O

/R~~~rv0~~[Jl (0 Q R
o

/R )/J
l

(0
O

) ] 2/3y
Oyb0~ 

. (52)

As mentioned at the beg inning of this section , it is evident

from Eqs. (50) and (52) that the TM mode coup l ing c o e f f i c i e n t

Q~ is much less than the TE mode coupling coefficient Q
~~

.

T h e r e f o r e , we conclude tha t  the TE mode is the dominant unstable pertur—

2
bation for O

cl
<<l • However , when the transverse electron mo t ion is

r e l a t i v i s t i c  (8 o
-
~
l) ,  the TM mode perturbation is equally important.

A careful examination of Eqs. (50) and (52) shows that the cou pl ing

coefficient between the vacuum waveguide mode and the electron

cyclotron resonance mode (w=kV
b
+sw /yb

) is a maximum whenever

J’(cx R /R )0 for the TE mode , and J ’(O R /R )0 for the TM mode.
s OnO c s On O  c

Here the prime ( ‘ )  denotes dJ (x ) / d x .  Tn t h i s  con tex t , we f ind  that

the  maximum growth r a t e  for  magnetic harmonic number s occurs for a

value of R
0

/R given by

a /ci , TE mode
R
Ø

/R = 
sl On (53)c ci 1/6 0 , TM mode

where a
1 

is the first root of J’(a
1
)0. Equation (53) is valid only

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  • - - •~~~~~~ -•-~~ -~~~ ~ • •-~~ - •~~ •
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when ci <it for  the TE mode , and ci < -  for the TM mode. For ccsi On sl On si On
(TI : )  or i

1 ~C~() (TM) , the max imum growth rate occurs for R
0/R~~ 1.

It should also be noted from Eq. (50) that perturbations with higher

magnetic harmonic number become dominant when the transverse electron

speed approaches c (l3
o
-
~
-1). In the following section , we make use of

Eqs. (48)—(52) to investigate detailed stability properties for a

broad parameter range of experimental interest.

-- — • • • •  --• —-- ---~~ -•- • • • -•-•- _ _ ——-~-•
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V. NUMERICAL AN ALYS I S OF STABILITY PROPERTIES

The grow th ra te w
1

lmw and real oscillation frequency w
r

Rew

have been calculated numerically from Eqs. (48) and (51) for a broad

-ange of system parameters , R0/R , n , s, 00, and 0b • Since the

electron beam is hollow (R
0
>a) and is located inside a conducting

waveguide of radius R (R ü <R c
_ a) , the allowable range of R

0/R is

restricted to

(S00
/ci
on
)<(R

0
/R
~~

<l_S0
0
/a
0~~ 

TE mod e

(54)

(50
0
/J30n) < (R

o
/R

c
)<l_50

0
/l3on~ 

TM mode

where use has been made of Eq.  (30) . Therefor e, in Figs. 5—7 , the

plots are presented only for values of R
0
/R satisfying Eq . (54).

Sho~~ in Fig. 5 ate plots of (a) the normalized growth rate

Ib
w
~
/
~ C 

and (b) the normal ized Dopp ler—shifted real frequency

Re(15
b
2
l

/w
c
)[l b

(w
r
_kV

b
)_w

cl/w c 
vers us R

0
/R obtained from Eq . (48)

(TE mode) tor s l , \) 0.OO1, 13o 0.4, 0b 0
~

286 ’ and severa values of n.

Sev eral fea tu res are not eworthy fr om Fi g. 5. First , the maximum

growth rate decreases as the radial harmonic number a is increased .

As evident from Eqs. (50) and (52), this feature represents a general

tendency for both TE and TM perturbations , for all magnetic harmonic

number s s. Second , the number of zeroes of w . (wh ere the grow th ra te

vanishes) increases as n is increased . Moreover , the maxim um val ue of

the ~r~~~t it rate is also a decreasing function of R
0

/ R . Th i rd , the plot

of the Doppler—shifted real frequency versus R
0
/R has the same general

form as the plot of the growth rate versus R
0
/ R .  However , the

g~~~ th r i t e  is about 1.5 times as large as the Dopp l er—shifted

real reqlien cv . This feature is a result of the f a c t  t h a t  t h e  c o n t r i hu —
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t i o n  of the second term in E q.  (48) is n e g l i g i b l e  in comparison wi th

the th i rd  term , fo r  0o 0
~

4
~ 

Fourth , the maximum growth ra te  occurs at

a value of R
o/R

~ 
corresponding to the maximum value of the perturbed

azimuthal electric field [Eqs. (18) and (44)].

Shown in Fig. 6 are plots of the normalized grow th ra te

versus R 0 /R obtained from Eq. (51) (TM mode) fo r  parameters  ident ical

to Fig . 5. Comyaring Fig. 6 w i th  Fig . 5(a) , it is evident tha t  the TE

mode is more unstable than the TM mode. For example , fo r  n l , the

maximum TE mode grow th rate is w .~ O.Ol43 u /y b, whereas the maximum

TM mode growth rate is w~~ O.OO55 Wc/Y b • In this context , we conclude

that the TE mode is a more effective means for exciting microwave

radiation , at least for modest values of 0~~. Since the p lot of the

Doppler—shifted real frequency has a similar form to the growth ra te

curve , it is not shown in Fig. 6 (see Fig. 5).

We now present an example that illus trates cyclo tron maser

stability properties for higher magnetic harmonic numbers (s>2).

Shown in Fig. 7 are plots of the normalized grow th rate y
b
wi/w

ver sus R
0/R obtained from Eq. (48) (TE mode) for (a) s 2  and

(b) s3 . and parameters otherwise identical to Fig. 5. As evident

from Fig. 7(a), the maximum growth rate for s=2 occurs for R
0

/R O. 78

when rt=1 , for R /R =0.44 when n=2 , and for R I R  0.3 when n 3 .  These
O c O c

values of R
0
/R correspond to R

0
/ R c c21/a0 [see Eq. (53)1. In Fig.

7(b) (s=3), the maximum growth rate for n=2 and n=3 also occur at

R0/R = O . 6  and R 0/R =O.41 , respect ively. However , for s 3  and n=l ,

the growth rate assumes a maximum value for R0
/R =O.69. since ct31>a01

[see Fig. 7(b)]. Evidentl~ , the value of R
0
/R =cc

1
/ci
0 

plays a very

important role in determining optimum system parameters for intense

m icrowave genera tion by the cyclotron maser instability.
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Of considerable experimental interes t is the stability behavior

for specified n and several values of s. Typical results are shown

in Fig . 8 where (a) time normalized maximum growth rate (y
b
u ./w ) - •

and (b) the normalized Dopp ler—shifted real frequency Re(ybc2/w )

ar e p lotted versus for n=2 and v O . O O 1.  In Fig.  8 , we assume 0b

and the solid and dashed curves represent the TE and TM

modes , respectively. The range of is limited to O.l<O
o
<O .5

s ince  this  s t a b i l i t y  analysis  is valid only when (v!y
0
)( c/ R w ~~

2
<<0~ <<l

[see Eqs . (33) and (4O)J. In Fig. 8(b), the real frequency for  the

s=l TE mode is related only for the range of ~~ corresponding to

instability (u.>O). For the TE mode perturbation , maximum growth

occurs at R /R =0.26 for s=l , at R /R =0.44 for s=2 , and at R /R =0.6O c  O c  O c

for s=3, whereas the TN mode perturbation with s=l has a maximum

growth rate at R0
/ R 0 .33 [see also Figs . 5—7j. Note that the C

s l  TE mode perturbation is stabilized by decreas ing to 0o 0.18 ,

which corresponds to 00 (4Q~2 /3) l/4 (5ee Ref. 10). As shown in Fig. 8(a), the

s=l TE mode per tu rba t ion  is the most uns t ab le  mode fo r  s m a l l  values

of 
~~ 

(0 o~0.3 , say). However , the  growth r a t e  of perturbations with

s>2 increases rapidly when the value of is in~ reased. A~ an exam p le ,

for the (s,n) ( 3 ,2) TE mode , the maximum growth rale increascs by a

factor of six when is increased from 0.2 to •).5. We trie refore

conclude that for moderate or high values of B
~~
, perturbat ions with

higher magnetic harmonic numbers (s>2) are also important unstable

modes for generating intense microwave radiation. ~e further note

f rom Fi g. 8 that the growth rate of the TM mode is comparable with

that of the TE mode , when 
~~ 

approaches unity.

L 
_ 

• • •~~~~~~~~ •~~~~ •~~~~~~~~~~~~~~~~~~~~~~ • ~~
.• •  • • •~~~~~~~~~~~~•~~~ • •~~~~~~~~~~~~~~~~~~~~•• ~~~~~~~~~~~~~~~~~~~~~~~~ • J
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Fi nally, we conclude this section by pointing out two importan t

areas where the present analys is can be extended . First ,

as previousl y shown for s=l , it may also be possible to demonstrate

analytically for higher magnetic harmonic numbers (s>2) that the region

of k—space corresponding to instability is very narrow—band with

Second , the present stability analysis can be extended in a relatively

s t ra igh t fo rward  manner to magnetic harmonic numbers s>4, and also to

higher  val ues of 0c~ ~~~~~

-- ~~~~~~~~~~~~~ --~~~•~~~~~~~~~~~ -• •• ~~~~~~~ .• -- -— 
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VI. CONCLUSIONS

In th is paper , we have examined t h e  excitation of electromagnetic

waveguide modes by the cyclotron maser instability for magnetic harmonic

number s>l. The analysis wa s carr ied out f or a holl ow elec tron

beam propagating parallel to a uniform magnetic field B
0~~ , 

ass uming

that the beam is very tenuous [Eq. (1)1. In Sec . II, equilibrium

properties were calculated for the choice of electron distribution

f unction in which all elec trons have the same value of canonical angular

momentum (P
0
) and same value of energy (y

0mc
2) in a frame of refere nce

moving with axial velocity Ob
c [Eq. (5)]. A formal stability analysis

for azimuthally symmetric electromagnetic perturbation was carried out

in Sec. III. Equations (38) and (39), when combined with Eqs. (16),

(22) , (23) , and (24), constitute one of the main results of this

paper and can be used to investigate stability properties for a broad

range of system parameters. In Sec. IV , a de tailed a’nalytic investigation

of the cyclotron maser instability was carried out for TE and TM

waveguid e mod es , assuming 0 (l—1/y~ )<<i. The value of the geometric

parameter R
0
/R corresponding to maximum growth rate was determined ,

and a de tailed numerical ana lys is of the dispers ion relat ion was

• presented in Sec. V. One of the principal conclusions of this stuly

• is that for moderate or high value of 0,~ (0o~
0.3, say) magnetic

harmonic per turbations with s>2 have growth rates comparable with t~ e

fundamental (s 1) mode. Moreover , the growth ra te of per turba tions

wi th s>2 increases rapidly when the value of is increased .

Finally ,  we emphasize that Eq. (53) together with Eq. (30),

can be used to calculate conditions for maximum microwave generation

by the cyclotron maser instability. By selecting the value of

-•• - - •
- -

~

-•

~
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the applied magnetic field at -cording to Eq. (30), and choosing R
0
/R=

• t
1
/c i

0
, the TE mode growth rat e can he maximized for magnetic harmonic

• number s, thereby optimizing t i m e microwave power output for radiation

with frequency w_sw Yb
.
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FIGURE CAPTION S

I 5 1 g. 1 E qu l  I lh r lmmnm runt I~~urat Ion ami d coordlii;it &~ system .

Fig. 2 Electron density profile [Eq. (13)].

Fig. 3 The straigh t lines w k V
b
+s
~ 

fi b and w kc/O
b 

in tersect at

(W O, kO)=(su y
b
, 5w

CYb
/c). For the TE mode , the curve

2 2  2 2 2 1/2w ( k  c +cc
0 

c /R) passes through (u0,k0
) provided

• cc c/R =5° . For the TN mode , the curve w= (k
2
c
2+02 c2/R2)~~

’2
On c c On c

passes thro ugh (~ 0,k0) provided 0On c/R
=si

~c•

Fig. 4 Electron orbit in a plane perpendicular to the z—axis .

Fig. 5 Plots of (a) normalized TE mode growth rate Yb
W
i
/W
c
,

and (b) normalized Doppler shif ted real frequency Re(y
b
l2
l
/WC

)=

versus R
0
/R [Eq. (48)] for s=l , v.0.OOl,

0o 0
~
4’ 0b °~

286 and several values of n.

Fig. 6 Plots of normalized TM mode growth rate IbWi/WC 
versus R

0
/R

[Eq. (51)1 for parameters identical to Fig. 5.

Fig. 7 Plots of normalized TE mode growth rate YbWi
/W c 

versus R
0

/R

[Eq. ( 48) ] for (a) s=2, and (b) s=3, and parame ters

otherwise identical to Fig. 5.

Fig. 8 Plots of (a) normalized maximum growth rate (y
bu ./ u ) ,

and (b) normalized Doppler shifted real frequency Re(y
b
Q/u )

versus 0
~
, for n=2 , \) 0.O01, 0b 00

/l.4 and several values of

s. The solid and broken curves correspond to the TE and TM

modes , respectively. 
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